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Critical Point

Hadron Gas Superconductor

The system created at RHIC behaves like perfect
Vel e, liquid (2005) How does the system thermalize ?

900 MeV
Baryon Chemical Potential

Nuclear

Is there is a critical point on the QCD phase
diagram ? (2019-2021)
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Viscous hydrodynamics and flow
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Assume that a thermal system is created shortly

after the collisions that expands hydrodynamically.

To describe the experimental data very small shear

viscosity to entropy ratio is needed

RHIC Scientists Serve Up "Perfect" Liquid, New

state of matter more remarkable

than predicted -raising many new questions

April 18, 2005
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How small is the shear viscosity ?

Validity of the hydrodynamics is governed by #/s
Hadron gas and QGP at very high temperature have large value #/s

Super-symmetric gauge theories at strong coupling have small #/s with lower bound
dictated by quantum mechanics #/s>1/(4 x) (Kovtun, Son Starinets 2005)
= QGP near the transition temperature 7, has close to minimal #/s
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Initial ttme dynamics and thermalization in heavy 1on collisions

Classical-statistical calculations of gluon distribution at early times (large gluon
occupation numbers)

Berges Schenke, Schlichting, Venugopalan, Nucl. Phys. A 931 (2014) 348

Q,t~1 1<Q,t<log’* (o ") Q,t~log*(c )

Instability

Gluon distribution: (<, p.v)

The gluon occupation number decreases at later times reaching O(1), the system becomes
quantum and strongly coupled

» quantum simulations are needed

Early time dynamics is important event-by-event fluctuations in AA, and high
multiplicity pA and AA collisions



Strongly coupled QGP and heavy quarks

Heavy quarks (M, ~ 1.5 GelV") flow in the strongly coupled QGP
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Finite Temperature QCD and 1ts Lattice Formulation
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cost ~ 1/a’

p#= 0 detDg(U,m,u) complex =) sion problem

‘ Taylor expansion

for not too large u

p(T, ) = 1 . Calculable in LQCD but the computational
T4 Z (Qn)!XQn(T)Nz difficulty increases with n !
n=1 (noise problem vs. sign problem)

Current calculations exist only to n=3. 6



Thermodynamics at non-zero net baryon density

6t order Taylor expansion, Bazavov et al, PRD 95 (2017) 054504
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Truncation errors of the 6" order Taylor expansions are small for ug/T<2.5

Critical point is strongly disfavored for ug/T<2.0



Correlation functions and transport coeffocients
Transport coefficients are encoded in the spectral functions:
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In LQCD one can calculated the Euclidean time transport coefficients = al;lno Y

G(r.p.T) = / d32eP® (] (x, —iT), J(x, 0))p

Due to analytic continuation |G(7,T) = D’ (-iT)

cosh(w - (1 — 57)
sinh(w/(27T)

G(r,p,T) = /OOO dwo (w, p, T)

Challenge: resolve a potentially narrow
transport peak at zero energy

with temporal extent in Euclidean time
that 1s limited by /T

=\

n ~g4T2/mq 2mq



Heavy quark diffusion constant from quenched LQCD

Direct method: determine the width of the transport peak,
Ding et al, arXiv:1204:4954, quenched 1283 %N, lattices, N,=24-48

Integrate out the heavy quark fields: <J,(7) J;(0) >=> <E4(t) E£ (0)>
Banarjee et al, arXiv:1109.5738, Kaczmarek et al, arXiv:1109:3941, N,=16-24

Lattice find values of D consistent with experiment and sQGP scenario
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Summary

* The are compelling questions in hot QCD that require quantum
computations:

1) What is the QCD phase diagram at high baryon density ? Is there critical point ?

2) How does thermalization in ultra-relativistic heavy ion collisions happen ?
3) What are the QCD transport coefficients ?

* Quantum simulations using optical lattices might provide an avenue addressing
these questions but many open challenges remain
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